For anyone unfamiliar with big data, hearing the term ‘data lake’ may conjure the image of a holiday hot spot frequented by the top dogs of Silicon Valley. But banish the thought of Zuckerberg in a speedo from your mind for a moment (you’re welcome)… You could not be further from the truth.
In fact, the term data lake, and its older cousin, data warehouse, describe types of data storage and, often, the types of technologies used to facilitate that storage. Both are used by enterprise businesses to manage data of different formats and enable executives and analysts to derive decision-making insights.
In this blog, we explore both concepts and ask, data warehouse vs data lake: what's the difference So that you know which type of data storage is best suited to your business needs.
First, let’s tackle data warehousing.
A data warehouse is a centralised repository of information that enterprises can use to support business intelligence (BI) activities such as analytics.
Data warehouses typically store data from various sources, integrating the source data to provide a unified view. These sources can include transactional systems, application log files, relational databases and more. The data in question is most often historical data required for periodical queries; this historical record is referred to as a business's ‘single source of truth’.
A standard data warehouse will include the following elements and functionality:
A relational database allows analysts to identify and access data in relation to other data via a structure made up of tables, rows and columns.
ETL stands for extract, transform and load; the acronym describes a common data preparation method for warehousing.
Tools that allow for statistical analysis, reporting and visualisation enable executives to mine and present data efficiently.
A data lake is a repository that allows for the storage of vast amounts of raw data, that is, data that has not been prepared, processed or manipulated to fit a particular schema.
Data lakes are typically housed within a Hadoop technology environment; Hadoop is an open-source software framework that facilitates massive data storage capabilities.
A key feature of a data lake is that no data is turned away, meaning that both structured and unstructured data formats can be stored. Because the data in a data lake is not subjected to data structures when it is ingested from the source, an ‘on-read’ schema is applied to facilitate data analysis as and when required.
Source: Grandview Research
Every data lake has the following common characteristics:
With Hadoop-enabled data lakes, raw data is stored, and modifications to the source data are pushed to the shared repository throughout the data lifecycle - making data lakes particularly beneficial for auditing and compliance.
Data lakes can facilitate both basic data management techniques (metadata management, data access control, and data asset management) and advanced data management capabilities (job management, process orchestration, data quality and data governance).
Metadata summarises information about each piece of data, making it easier to find and work with - it gives data context and meaning. Author, date created, date modified, and file size are all basic examples of metadata.
Data lakes provide full metadata, meaning analysts can manage all data-related elements to a far more advanced query level. Examples of advanced metadata accessible in data lakes include data sources, data formats, connection information, data schemas, and permission management capabilities.
Now that you have a basic understanding of each term, let’s delve into the differences; there are several key factors that differentiate data lakes from data warehouses:
Type of Data
What type of data is stored?
Purpose
Why is it important to a business?
Users
Who uses it?
Tasks
What tasks does it perform?
Size
How large is its storage capacity?
Data Quality
How reliable is the data?
Processing
How is data processed?
Agility
How does it respond to change?
Despite their differences, data lakes and data warehouses can be used to complement each other and expand a businesses capabilities in terms of unstructured data handling. For many companies, enhancing their existing data warehouse with a data lake, a practice known as DW augmentation, has proven to boost their return on investment and keep them competitive in an increasingly data-orientated marketplace.
Proper data storage ensures that your business can draw insights from the analytics produced and, in turn, make more informed decisions. When deciding what data storage method is right for your business, you must consider the types of data you work with, the volume of data, and your data analysts’ capabilities. An understanding of all three is essential to get the most from your investment.